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Although there is increasing awareness of disparities in COVID-
19 infection risk among vulnerable communities, the effect of
behavioral interventions at the scale of individual neighborhoods
has not been fully studied. We develop a method to quantify
neighborhood activity behaviors at high spatial and temporal
resolutions and test whether, and to what extent, behavioral
responses to social-distancing policies vary with socioeconomic
and demographic characteristics. We define exposure density
(Exρ) as a measure of both the localized volume of activity in
a defined area and the proportion of activity occurring in dis-
tinct land-use types. Using detailed neighborhood data for New
York City, we quantify neighborhood exposure density using
anonymized smartphone geolocation data over a 3-mo period
covering more than 12 million unique devices and rasterize
granular land-use information to contextualize observed activ-
ity. Next, we analyze disparities in community social distancing
by estimating variations in neighborhood activity by land-use
type before and after a mandated stay-at-home order. Finally,
we evaluate the effects of localized demographic, socioeco-
nomic, and built-environment density characteristics on infection
rates and deaths in order to identify disparities in health out-
comes related to exposure risk. Our findings demonstrate distinct
behavioral patterns across neighborhoods after the stay-at-home
order and that these variations in exposure density had a direct
and measurable impact on the risk of infection. Notably, we
find that an additional 10% reduction in exposure density city-
wide could have saved between 1,849 and 4,068 lives during
the study period, predominantly in lower-income and minority
communities.

mobility behavior | neighborhood disparities | COVID-19 | computational
modeling | geolocation data

As of December 17, 2020, there have been 73 million cases
of COVID-19 in more than 200 countries, and 1.6 million

people have lost their lives to the disease (1). The COVID-
19 pandemic is considered the most severe public health crisis
since the 1918 flu pandemic due to its transmission and infec-
tion characteristics (2–5). Social distancing (also referred to as
physical distancing) has been shown to be an effective behav-
ioral nonpharmaceutical intervention to reduce the transmission
rate of COVID-19 (3–7). Social distancing reduces the prob-
ability of contacts between individuals who might be infected,
resulting in reduced exposure risk (7, 8). Governments have
implemented a range of social-distancing policies, including
travel bans, restrictions on gatherings, school closures, nonessen-
tial business closures, and restaurant restrictions. In particularly
hard-hit locations, mandatory “stay-at-home” orders have been
issued to limit or avoid unnecessary close contacts outside of the
home (7–9).

Studies have found that social-distancing measures help to
prevent transmission of the virus and reduce the reproduction
(R0) number (5–7, 10–14). These practices help to avoid over-
whelming hospital intensive care units and healthcare systems,
control doubling time of infections, and ultimately save lives (5,
8, 14, 15). Although not without potentially significant hardship

to individuals and communities, social distancing is an impor-
tant public health tool to flatten the epidemic curve and support
longer-term economic and public health benefits (3, 15–17).

However, the impact of, and response to, stay-at-home orders
and social-distancing guidelines is not uniform across neighbor-
hoods and communities (18, 19). In order to maximize the posi-
tive effects of social distancing, individuals need to change their
typical behavior, often dramatically (3, 20). Despite government-
mandated social-distancing policies (such as New York State’s
PAUSE order), socio-behavioral responses vary across neighbor-
hoods, further contributing to disparities in risk of infection (4,
7, 21). Disparities in social-distancing practices—namely, geo-
graphic or population subgroup differences in adopting behavior
changes in response to the same policy context—may stem from
varying levels of awareness, perception, or belief in the severity of
the virus threat; differences in social and cultural norms; or the
ability of households and communities to alter normal activity
patterns given economic constraints or other existing responsibil-
ities (7, 20–23). For example, lower-income households typically
do not have the option to work from home, and going to a
place of work (often in essential services) is unavoidable, mean-
ing higher risk of exposure to COVID-19 for themselves, as well
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as their families and communities (7, 24). Within specific neigh-
borhoods, norms can also be reinforcing; if large numbers of
residents are essential workers and not socially distancing, other
residents may have similar behavioral responses (20).

A growing number of outbreaks are occurring in densely
populated areas (25), with disproportionate impacts on lower-
income and predominantly minority communities (18, 26–28).
Measuring and understanding social distancing and behavior
change across neighborhoods can provide critical insight into the
design and implementation of more effective—and equitable—
public health policy. Given the potential heterogeneity in local-
ized responses to social-distancing recommendations, quantify-
ing local patterns of activity represents an emerging tool to
understand and eventually reduce local exposure risk and limit
community outbreaks (7, 29, 30). Although there has been
increasing awareness of the troubling disparities in infection
rates and outcomes in vulnerable communities, the effectiveness
of behavioral interventions at the scale of individual neighbor-
hoods has not been fully studied. Often, studies that do attempt
to observe effects at higher spatial resolutions rely on simula-
tions or are limited to relatively coarse areal units (e.g., county or
state) due to data availability and computational constraints (31–
34). Absent a more complete understanding of neighborhood
activity patterns in response to nonpharmaceutical interven-
tions, disaggregating built-environment, behavioral, and social
determinants of health in the context of COVID-19 remains
a challenge.

We develop a method to quantify neighborhood activity at
high spatial and temporal resolutions to test whether—and to
what extent—behavioral responses to social-distancing policies
vary with socioeconomic, demographic, and built-environment
characteristics. We define exposure density (Exρ) as a measure
of both the localized volume of activity in a defined area and
the proportion of activity occurring in nonresidential and out-
door land uses, areas that can be associated with an increased
risk of exposure to others that may be infected. We utilize this
approach to capture community inflows/outflows of people as a
result of the pandemic and changes in mobility behavior for those
that remain.

Our focus is on New York City (NYC), the first epicenter
of the pandemic in the United States, where a statewide stay-
at-home order (NY on PAUSE) was introduced on March 22,
2020. By June 30, 2020, NYC had more than 212,000 confirmed
cases of COVID-19, accounting for 8% of the nationwide total,
resulting in at least 18,492 confirmed deaths and 4,604 prob-
able deaths (35). Our methodology proceeds in three steps.
First, we develop a generalizable method for assessing neigh-
borhood activity levels using smartphone geolocation data over
a 3-mo period (February, March, and April) covering more
than 12 million unique devices within the Greater New York
area, together with land-use classifications at 1-m grid resolu-
tion. Second, we measure and analyze disparities in community
social distancing by estimating variations in neighborhood activ-
ity and associated patterns in community characteristics before
and after the stay-at-home order. Finally, we evaluate the effect
of exposure density on COVID-19 infection rates associated with
localized demographic, socioeconomic, and built-environment
characteristics in order to identify disparities in health out-
comes related to mobility behavior. Our findings provide insight
into the timely evaluation of the effectiveness of social dis-
tancing at the scale of individual neighborhoods and support a
more equitable allocation of resources to vulnerable and at-risk
communities.

Measuring Exposure Density by Neighborhood over Time
We explore three hypotheses. First, large-scale mobility data
can represent neighborhood activity levels over time, and neigh-
borhood social distancing can be measured by changes in

this observed activity. Second, disparities in community activ-
ity changes before and after a stay-at-home order are associ-
ated with neighborhood socioeconomic, demographic, and built-
environment characteristics. Third, variations in neighborhood
social distancing result in disparities in COVID-19 infections and
outcomes, controlling for differences in population health risk.

To examine these questions, we introduce exposure density
(Exρ) as a high-spatiotemporal-resolution social-distancing met-
ric using large-scale mobility data without tracking individual
devices. The goal of social distancing is to reduce the probability
of contact between potentially infected and noninfected individ-
uals; therefore, it can be defined mathematically as the inverse
proportion of human activity density, represented by the num-
ber of people in a given area at a given time. Naively, a lower
activity volume, holding spatial area constant, results in a lower
dynamic population density, thus decreasing the probability of
close contacts. However, this metric needs to account for both
the volume of activity in an area and the type of land use where
activities occur. For example, activities in residential buildings
can be a measure of people staying at home, while activities out-
side of residential buildings, depending on the specific nature
of those activities, are more likely to increase exposure risk
by raising the likelihood of contact with those outside of the
family or household unit. As transmission risk increases with a
greater probability of close contacts outside of the household
or family unit, we quantify Exρ based on activities in nonresi-
dential buildings (e.g., office buildings, hotels, and retail stores)
and outdoor areas (e.g., parks, sidewalks, and open spaces).
We measure the average number of hourly users per grid cell
(250 m × 250 m) outside of residential buildings for 177 zip code
tabulation areas during the pre-COVID period and after the
stay-at-home order.

The average change in neighborhood exposure density before
and after the New York stay-at-home order (by grid cell) and
COVID-19 infection positivity rates (by zip code) are presented
in Fig. 1. The positivity rate is a measure of the prevalence
of disease infection, represented by the percentage of COVID-
positive tests out of all tests conducted in a given area using a
PCR test (SI Appendix, Table S3). The citywide overall activ-
ity volume decreased approximately 20% after the stay-at-home
order when compared to the pre-COVID baseline (SI Appendix,
Fig. S2). However, there are significant disparities in neighbor-
hood exposure density levels across the city, as shown in Fig. 1,
Upper. A majority of neighborhoods in Manhattan, and several
in Brooklyn, experienced large reductions in exposure density,
a result, in part, of a decrease in overall population as many
residents left the city, and a shift in activities from nonresiden-
tial and outdoor areas to residential buildings for those that
remained. On the other hand, neighborhoods in South Brooklyn,
East Queens, and Staten Island showed an increase in exposure
density, despite having relatively lower urban densities, as more
residents stayed within their local communities. The measured
change in exposure density corresponds with higher positivity
rates, as illustrated in Fig. 1, Lower. Overall, this visual repre-
sentation suggests that areas with lower median incomes and
lower housing density had greater infection risk during the study
period.

Community Disparities in Behavioral Responses to Social
Distancing
Neighborhoods are classified into groups based on changes in
community exposure density before and after the stay-at-home
order by using a hierarchical agglomerative clustering algo-
rithm (see Materials and Methods for a detailed description).
Fig. 2 visualizes the spatial patterns of the clustering output with
associated time series of neighborhood activity and where (by
land-use type) that activity is occurring. In order to contextu-
alize neighborhood activity patterns, we collect and integrate
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Exposure Density Change (%)

COVID-19 Positivity Rate (Zip Codes)

Fig. 1. Neighborhood exposure density change by 250-m × 250-m grid cell (Upper) and COVID-19 positivity rate by zip code (Lower).

a range of demographic, socioeconomic, housing, and public-
health-related variables retrieved from multiple data sources
(Materials and Methods and SI Appendix, Table S1). Descriptive
statistics of input variables and neighborhood features for each
group, shown in Table 1, reveal distinct neighborhood profiles
based on changes in Exρ over time.

We identify five neighborhood clusters based on this analy-
sis. Group 1 (21 zip codes) and group 2 (21 zip codes), which
we label “outflow” neighborhoods based on observed activity
patterns, are primarily located in Manhattan and downtown
Brooklyn and represent substantial changes in Exρ after the
stay-at-home order. As shown in Table 1, the average activity
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Fig. 2. Agglomerative clustering results and associated neighborhood activity change. (Upper) Activity volume by land use. (Lower) Activity proportion by
land use.

volume change for group 1 and group 2 is −56.5% and −33.5%,
respectively, meaning that these two neighborhood groups expe-
rienced nontrivial declines in normal activity levels—across all
land-use types—during the pandemic. Most neighborhoods in
group 1 and group 2 have a higher percentage of younger,
non-Hispanic White residents, relatively smaller average house-
hold size, and higher incomes and educational attainment. This

indicates that residents in these clusters are among the least vul-
nerable population groups. As such, they may be more likely
to have the opportunity to leave their home neighborhoods (or
stay at home) by shifting to remote working environments to
avoid exposure risk, resulting in reduced exposure density. Even
though these two clusters present similar outflow patterns with
respect to neighborhood activity volume, the activity-proportion
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Table 1. Descriptive statistics of neighborhood clusters

Group 1: Group 2: Group 3: Group 4: Group 5:
Outflow-mixed use Outflow-residential Stable-outflow Stable-stable Shelter-in-place

Feature (yellow) (blue) (orange) (green) (red)

Clustering input variables
Residential volume change, % −0.52 −0.37 −0.20 −0.01 0.20
Residential proportion change, % 0.12 0.01 −0.01 0.07 0.09
Nonresidential volume change, % −0.60 −0.28 −0.19 −0.13 −0.00
Nonresidential proportion change, % −0.01 −0.14 0.00 −0.07 −0.09
Outdoor volume change, % −0.61 −0.42 −0.18 −0.07 0.07
Outdoor proportion change, % −0.04 −0.07 0.02 −0.01 −0.03
Exposure density change
Neighborhood activity change, % −0.63 −0.40 −0.20 -0.11 0.03
Demographic and socioeconomic

features
Age group 25–34, % 0.28 (0.08) 0.22 (0.05) 0.19 (0.04) 0.16 (0.06) 0.13 (0.02)
Age group over 65, % 0.12 (0.07) 0.15 (0.06) 0.12 (0.04) 0.14 (0.05) 0.17 (0.07)
Black, % 0.05 (0.04) 0.14 (0.17) 0.27 (0.22) 0.31 (0.28) 0.16 (0.25)
Non-Hispanic, % 0.90 (0.05) 0.77 (0.19) 0.60 (0.21) 0.72 (0.07) 0.82 (0.11)
Foreign-born, % 0.16 (0.08) 0.14 (0.05) 0.18 (0.08) 0.15 (0.07) 0.13 (0.08)
Avg. household size 1.92 (0.26) 2.21 (0.35) 2.61 (0.31) 2.90 (0.45) 2.91 (0.37)
College degree, % 0.40 (0.07) 0.31 (0.09) 0.20 (0.08) 0.19 (0.07) 0.20 (0.04)
Unemployment rate 0.04 (0.01) 0.05 (0.03) 0.08 (0.03) 0.08 (0.04) 0.06 (0.02)
Healthcare support workers, % 0.01 (0.01) 0.03 (0.02) 0.06 (0.04) 0.07 (0.04) 0.05 (0.03)
Retail service workers, % 0.03 (0.01) 0.04 (0.02) 0.06 (0.01) 0.05 (0.02) 0.05 (0.02)
Median income, $ 133,000 90,000 54,000 62,000 72,000
Avg. commute time, minutes 27.05 (3.00) 33.83 (4.15) 41.86 (3.23) 44.7 (3.87) 45.30 (3.73)
No health insurance, % 0.04 (0.02) 0.06 (0.03) 0.09 (0.03) 0.09 (0.04) 0.07 (0.04)
Owner-occupied units, % 0.26 (0.12) 0.23 (0.12) 0.22 (0.14) 0.41 (0.21) 0.59 (0.20)
Urban form features
Residential area, % 0.30 (0.20) 0.71 (0.13) 0.69 (0.14) 0.69 (0.14) 0.71 (0.18)
Office area, % 0.43 (0.24) 0.05 (0.06) 0.05 (0.03) 0.04 (0.03) 0.03 (0.02)
Commercial area, % 0.57 (0.22) 0.24 (0.10) 0.25 (0.12) 0.25 (0.13) 0.21 (0.13)
One or two family units, % 0.00 (0.00) 0.03 (0.05) 0.15 (0.15) 0.41 (0.27) 0.64 (0.26)
Population 959,780 988,652 2,489,946 2,970,495 985,480
COVID-19 features
Case counts 12,740 20,735 62,151 79,755 25,715
Deaths counts 1,131 2,061 5,397 6,906 1,909
Case rate 1,166.60 (431.88) 1,570.96 (621.38) 2,475.90 (786.84) 2,790.36 (777.17) 2,534.96 (630.57)
Death rate 91.12 (76.79) 150.63 (84.10) 219.87 (83.11) 224.46 (97.73) 195.78 (116.87)
Positivity rate 0.11 (0.03) 0.15 (0.05) 0.22 (0.05) 0.24 (0.04) 0.23 (0.04)

Statistically significant differences between groups are based on one-way ANOVA and Tukey’s multicomparison method. Mean values are shown with SD
in parentheses. COVID-19 features are based on data provided by the NYCDOH through June 4, 2020.

changes exhibit some notable differences. While the proportion
of residential activities in group 1 increased by 12% without
any significant changes in nonresidential and outdoor activities,
group 2 showed a 14% increase in nonresidential activity, a func-
tion of the pre-COVID resident population size. Therefore, we
refine the labels for group 1 and group 2 as “outflow-mixed use”
and “outflow-residential,” respectively.

Group 3 (43 zip codes) neighborhoods exhibit a 19% decrease,
on average, in exposure density. Although we see a marked
outflow of residents, these neighborhoods maintain a stable pro-
portion of activity between the different land uses, indicating
that residents who remained in these communities largely main-
tained their regular behavior patterns. When compared to the
outflow groups (groups 1 and 2), these “stable-outflow” commu-
nities have higher proportions of racial and ethnic minorities,
foreign-born residents, and lower median incomes, as well as
significantly higher proportions of renter households and those
without health insurance. Additionally, a greater percentage of
employees in these neighborhoods work in retail services and
healthcare support occupations, essential businesses that were
not required to close during the outbreak. Like group 3 neigh-

borhoods, communities in the group 4 cluster have stable activity
patterns over time; however, these neighborhoods did not see
a significant out-mover population. These communities, which
we label “stable-stable,” comprise socioeconomically vulnerable
households and a high proportion of racial minorities (account-
ing for approximately 75% of the population), coupled with the
second lowest median income, large average household size,
high unemployment rate, lower educational attainment, and a
large share of healthcare support workers. Such socially and eco-
nomically vulnerable neighborhoods are less likely to be able
to work from home, as the nature of the predominant occupa-
tions in these communities often requires physical presence at
the workplace, leading to fewer opportunities to reduce expo-
sure to others. We also find that the relatively modest change
in exposure density in these “stable” groups (18% and 10%
decrease in nonresidential activity density for group 3 and group
4, respectively) is associated with significantly higher infection
rates. Particularly, the stable-stable neighborhood group shows
the highest case rate (2,790 cases per 100,000 population), death
rate (224 deaths per 100,000 population), and positivity rate
(24%) in the city.

Hong et al.
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In comparison to other clusters, group 5 (“shelter-in-place”)
neighborhoods demonstrate a 20% increase in local activity vol-
ume for residential activities and a 7% increase in outdoor
activities. In addition to increasing overall neighborhood activ-
ity volume, residents staying in these neighborhoods are found
to shift activity to residential buildings (by 10%) and away from
nonresidential and outdoor activities (by 6%). While nonresiden-
tial activities are found to decrease as a proportion of the three
activity types, the increase in the overall volume of activity leads
to a net increase in exposure density. This group has the high-
est proportion of elderly population, the largest household size,
moderate incomes, a relatively lower percentage of racial and
ethnic minorities, and a significantly higher homeownership rate.
This indicates that activity in these neighborhoods, where hous-
ing density is the lowest in the city, became more localized. As
a result, group 5 experienced the second-highest infection rate
(2,534 case rate), despite the relatively low built-environment
density compared to other neighborhoods.

Socioeconomic Disparities in Neighborhood Health Outcomes
and the Effects of Exposure Density
The results of the bivariate regression model are shown in Fig. 3.
Exposure density is found to be correlated with case rate (R2 =
0.34), death rate (R2 = 0.15), and positivity rate (R2 = 0.42),
while, as expected, not being a statistically significant determi-
nant of fatality rate (deaths per case). Based on these simple
relationships, a 1-percentage-point decrease in exposure density
is associated with a 1.33% reduction in case rate, a 1.59% reduc-
tion in death rate, and a 1.16% decrease in positivity rate in NYC.
By extension, if all neighborhoods reduced exposure density by
10% as compared to normal activity levels prior to the stay-at-
home order, approximately 28,960 COVID-19 cases [95% CI of
23,320 to 33,920] could have been avoided, and 2,940 [1,849;
4,068] lives saved through the end of June 2020.

The results of our multivariate regression models, which con-
trol for neighborhood socioeconomic, demographic, and built-
environment covariates, are described in Table 2. We combine
both outflow cluster groups (groups 1 and 2) and use the stable-
stable neighborhood group (group 4) as the reference case. As a
robustness check, we also specify these models using exposure
density as a continuous variable, replacing the neighborhood-
cluster dummy variables. After accounting for neighborhood
covariates, we continue to observe statistically significant coef-
ficients for the exposure-density variables. The positivity-rate
model (model 3) shows the most substantial effects of behavior
change on measured health incomes. Neighborhoods (those in
groups 1 and 2) that reduced exposure density, largely through
outmigration of local population, are shown to have a 44.3%
lower positivity rate compared to the reference group. For out-
flow neighborhoods that maintain the distribution of activities
across land-use types (classified as the stable-outflow group), the
output shows a 23% lower positivity rate. A similar pattern is
also found in the case-rate model (model 1), and the direction
and significance of the coefficients are similar in the model spec-
ifications using the continuous exposure density variable. These
findings provide additional empirical evidence for the effective-
ness of social distancing as a nonpharmaceutical intervention
strategy to reduce COVID-19 spread, reinforcing that proactive
neighborhood behavior change can help to prevent transmission
of the virus (5–7, 10–13).

As importantly, race and ethnicity, age group, and socioeco-
nomic status are found to have statistically significant effects
on neighborhood infection rates and disease outcomes. Com-
munities with larger proportions of minority and lower-income
populations are more likely to be at risk for virus transmis-
sion. For example, for every 10% increase of Hispanic residents
in a community, the positivity rate increases by 5%, the case
rate increases by 9%, and the death rate increases by 6%. This

R-squared = 0.34 R-squared = 0.15

R-squared = 0.42

A B

DC

Fig. 3. Scatter plot of exposure density versus the log-transformed cumulative number of COVID-19 cases through June 4, 2020, with linear best-fit lines
for significant correlations. (A) Case rate. (B) Death rate. (C) Positivity rate. (D) Deaths per case. Colors represent individual clusters.
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Table 2. Multivariate regression model results

Feature Model 1: Case rate Model 2: Death rate Model 3: Positivity rate Model 4: Deaths per case

Num of obs. 177 177 177 177
F-stats. 35.69 16.59 53.26 10.90
Prob > F 0 0 0 0
R2 0.77 0.61 0.83 0.50
Intercept 7.040 (0.171)*** 2.862 (0.403)*** 2.359 (0.116)*** −3.848 (0.249)***
Group outflow-mixed and

outflow-residential −0.632 (0.135)*** −0.716 (0.318)*** −0.443 (0.091)*** 0.128 (0.197)
Group stable-outflow −0.436 (0.142)*** −0.003 (0.335) −0.228 (0.096)∗∗ 0.426 (0.207)∗∗

Group shelter-in-place −0.051 (0.115) −0.010 (0.273) −0.130 (0.078)∗ 0.050 (0.169)
% Black 0.005 (0.001)*** 0.007 (0.002)*** 0.004 (0.001)*** 0.002 (0.001)∗

% Hispanic 0.009 (0.001)*** 0.003 (0.003)*** 0.005 (0.001)*** 0.006 (0.002)∗

% Units occupied by owner 0.002 (0.001)∗ −0.005 (0.003) 0.003 (0.001)*** −0.007 (0.002)***
% Household with kids 0.012 (0.003)*** 0.028 (0.008)*** 0.013 (0.002)*** 0.014 (0.005)***
% Employees working from home −0.018 (0.008)∗∗ 0.010 (0.019) −0.016 (0.005)*** 0.015 (0.011)
Num of occupied nursing home

beds per 100 people 0.036 (0.010)*** 0.086 (0.024)*** 0.008 (0.007) 0.059 (0.015)***
% Household without health insurance −0.018 (0.011)∗ 0.046 (0.025)∗ −0.003 (0.007) 0.056 (0.015)***
Insurance × group effect 1 0.062 (0.017)*** 0.088 (0.041)*** 0.046 (0.012)*** 0.001 (0.025)∗

Insurance × group effect 2 0.042 (0.014)*** 0.010 (0.033) 0.021 (0.010)∗∗ −0.031 (0.021)
Insurance × group effect 3 0.001 (0.013) −0.008 (0.031) 0.018 (0.009)∗∗ −0.008 (0.019)
Age group over 65 0.014 (0.005)*** 0.069 (0.011)*** 0.008 (0.003)*** 0.043 (0.007)***
% Public housing area −0.005 (0.003)∗ 0.006 (0.007) −0.002 (0.002) 0.009 (0.004)∗∗

SEs are in parentheses. F-stats., F-statistics; Num of obs., number of observations; Prob, probability.
∗P < 0.10; ∗∗P < 0.05; ∗∗∗P < 0.01.

finding holds after accounting for changes in exposure density.
As expected, exposure density is not shown to be a statisti-
cally significant feature in the death-rate and the deaths-per-case
models, while the variables related to the presence of vulner-
able populations have significant negative impact on survival
probability. We find that the proportion of residents over the
age of 65, without health insurance coverage, or living in pub-
lic housing have positive and statistically significant associations
with death rates across the city. Thus, the mortality risk of the
virus is higher in socially vulnerable neighborhoods than in other
communities, exacerbated by pre-existing health conditions and
lack of adequate access to healthcare. This also helps to explain,
in part, why the stable-outflow group, which includes neighbor-
hoods with the highest proportion of lower-income residents
without health insurance, experienced an approximately 43%
higher fatality rate compared to the reference group, despite
observed lower infection rates.

Discussion and Conclusion
We present a computational approach to measure exposure
density at high spatial and temporal resolution to understand
localized disparities in transmission risk of COVID-19. By inte-
grating geolocation data and granular land-use classifications, we
are able to establish both the extent of activity in a particular area
and the nature of that activity across residential, nonresidential,
and outdoor spaces. This approach is scalable to any areal unit
of interest: Here, we utilize a 250-m grid and aggregate to the
zip code level to match the geography of reported health data.
However, it is possible to apply the same methodology to point
locations or grids of any size and then aggregate the units to other
common administrative or political boundaries, such as census
tracts, counties, and metropolitan areas. We normalize our data
to enable comparative studies between regions and to scale the
analysis to other cities with similar land-use data resources.

Our findings demonstrate distinct patterns of activity before
and after the stay-at-home order across neighborhoods in NYC.
These neighborhood patterns are clustered into five distinct
groups, each exhibiting statistically significant differences in

socioeconomic, demographic, and built-environment character-
istics. In wealthier neighborhoods of Manhattan and Brooklyn,
we observe an exodus of residents leaving for other areas around
NYC or regions further afield. Presumably, these residents have
the means to relocate to second homes or rental homes that
provide a greater degree of (perceived) safety from the virus.
In addition, residents in these neighborhoods were more likely
to work from home before the pandemic, suggesting that these
residents had similar opportunities to work remotely after the
stay-at-home order, thus reducing the transaction costs of leav-
ing their primary residence. Conversely, we observe clusters of
lower-income neighborhoods and areas of minority concentra-
tion that faced greater infection risk. While some residents in
neighborhoods in the stable groups did relocate, the large major-
ity stayed in their communities and continued on with their
typical (pre-COVID) routines. As a result, we find that expo-
sure density in these neighborhoods remained relatively constant
over the study period, reflecting the continued need to commute
to work and other places of responsibility, especially given that
many of those employed worked in occupations deemed essen-
tial services (for instance, 12% of employed residents work in
retail or healthcare support services) (7). Finally, we find a clus-
ter of neighborhoods that increased their exposure density due
to an increase in localized activity. These neighborhoods, char-
acterized by lower-density, single-family homes in areas further
from the Manhattan central business district, are found to have
both a greater volume of activity and more activity taking place
in nonresidential and outdoor areas than normal. The effect of
this local activity was an increase, compared to pre-COVID lev-
els, in the probability of coming in contact with others outside of
the household or family unit.

The variation in exposure density has a direct and measurable
impact on the risk of infection. In neighborhoods where expo-
sure density decreased the most, we find lower rates of infection,
positivity rates, and death rates per capita, controlling for other
covariates associated with social determinants of health. The
communities hardest hit by the virus were in the stable-stable
neighborhoods, where residents faced multiple challenges and
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risk factors. In addition to continuing their normal activity pat-
terns, and thus exposing themselves to greater risk of infection
while commuting and in their place of work, these communi-
ties have the largest proportion of racial minorities, among the
lowest median incomes, and the lowest rate of health insurance
coverage. These compound risks resulted in these vulnerable
communities facing the burden of the highest rate of infection,
death rate, and positivity rate in the city during the study period.
Notably, if these neighborhoods were able to reduce their expo-
sure density by as much as the wealthiest neighborhoods, more
than 1,300 lives could have been saved through the end of June
2020.

We note several potential limitations to this work. These
include the data availability and coverage, the spatial accuracy of
the geolocation data used to assign land-use classifications, and
the use of zip codes as an areal unit of analysis. We acknowledge
and account for these constraints, as described in Materials and
Methods.

Nonetheless, our study highlights the importance of under-
standing neighborhood activity patterns in evaluating the deter-
minants of health outcomes and risk factors for future infection
outbreaks. By measuring exposure density at the community
scale, we are able to determine the differential behavioral
response to social-distancing policies based on local risk factors
and socioeconomic inequality. Our results expose the significant
disparities in health outcomes for racial and ethnic minorities
and lower-income households. Exposure density provides an
additional metric to further explain and understand the disparate
impact of COVID-19 on vulnerable communities and a tool for
the design and evaluation of equitable, targeted public health
interventions.

Materials and Methods
Data. Our primary data are anonymized smartphone geolocations col-
lected by VenPath, Inc.—a data-marketplace company providing mobile-
application data and business-analytics consulting based on more than 200
smartphone applications across the United States. The approximately 5-TB
dataset covers the period from February through April, 2020, and contains
more than 127 billion geotagged data points associated with 120 million
unique devices every month. Due to the level of granularity and potential
reverse-identification risk, a dedicated data-management plan detailing the
protocols for access, use, and security of these data was developed, and
data were stored in a secured and access-controlled database environment
maintained by New York University’s (NYU’s) High Performance Computing
infrastructure. Both the data-processing methods and data-management
plan were approved by NYU’s Institutional Review Board (approval no.
IRB-FY2018-1645), with input from, and review by, NYU Data Services.
Furthermore, we developed our methodology so as to avoid tracking of
individual devices and, instead, focused on spatial and temporal aggrega-
tion of device counts. For the purpose of this study, the data were processed
and spatially aggregated to counts at the 250-m grid cell level, which pre-
serves the anonymity of users, especially in a densely populated region such
as NYC. For this study, we extracted a subset of data falling within the
Greater New York area bounding box extent (40◦29′46.0′′N74◦15′20.1′′W :
40◦54′55.9′′N73◦42′00.0′′W) and adjusted timestamps to the Eastern Stan-
dard Time zone, resulting in 12,858,781 unique devices over the study
period. After filtering for devices active for at least 14 d over the study
period, the processed dataset includes 744,147 unique devices, representing
approximately 8.9% of the NYC population. To complement our mobil-
ity data, we used a range of ancillary data for analysis and modeling (SI
Appendix, Table S1). NYC Primary Land Use Tax Lot Output (PLUTO) data
were used to obtain land-use and building-type information for every prop-
erty in the city (36). The building-footprint shapefile was used to identify the
exact perimeter of individual buildings (37). NYC LION data—a single line
street base map—were used to extract street-segment geometries (38). We
used daily NYC COVID-19 information by zip code, which includes confirmed
cases, deaths, and positive test rates, provided by the NYC Department of
Health and Mental Hygiene (NYCDOH) (35). In order to contextualize neigh-
borhood demographic, socioeconomic, housing, and public-health-related
characteristics, we used American Community Survey data from the US Cen-
sus Bureau, NYC hospital locations from NYC OpenData, and nursing-home
data provided by the US Centers for Disease Control and Prevention (39–41).

With the exception of the smartphone geolocation data, all data are
publicly available and extracted from NYC or federal open-data platforms.

Building the Exposure-Density Metric. Here, Exρ is measured as the number
of unique devices in a given geographical and temporal unit by land-use
type, specified as:

Exρ= f(Ag,t,L), [1]

where g is a given geographical unit (e.g., grid cell or census block group), t
is a given temporal unit (e.g., hourly or daily), and L is the land-use class.

In order to maintain a scalable and uniform areal unit that can be applied
across different cities and regions, we divided the NYC study area into a 250-
m grid (187× 186 cells), which we used for aggregation of the mobility data.
To integrate the mobility data with land-use information, we created a 1-m
resolution raster with the extents and the coordinate system matching the
aforementioned 250-m grid. The land-use raster combines the geographi-
cal city limits and land-use classification derived from PLUTO data, together
with street and sidewalk boundaries and building footprints for more than
1 million buildings. Each category of land cover was then classified by an
integer (e.g., 10 for residential property, 50 for outdoor open space, and so
on). Each 1-m cell was then identified by its index, location, and associated
land-use category. This allowed us to assign each geolocation data point
from the mobility dataset to a specific land-use cell.

One limitation to this method is the horizontal accuracy of the mobility
data, which can add nontrivial uncertainty to the reported ping location.
The geolocation error is a function of the source of the data (applica-
tion type) and the technology it relies on. Mobile-device locations can be
retrieved by using Global Positioning Systems with an estimated accuracy
ranging from 1 to 20 m, depending on the area; local Wi-Fi network signals
with accuracy up to several hundred meters; cell triangulation providing
location at the neighborhood level; and network internet-protocol address
location or user-registration information yielding a static location associ-
ated with the network hardware (42–44). VenPath data collect geolocation
information from a variety of applications that can utilize one or multiple of
these technologies, resulting in varying CIs for the geolocation coordinates
of a device at a particular time. The calculated average horizontal accu-
racy obtained directly from the dataset is 52.6 m, and the median accuracy
is 16.0 m. Given this uncertainty, and the inability to validate it based on
the data provided, we used the reported geolocation coordinates as the
device location for the purposes of land-use classification, but also con-
ducted a robustness check using 20-m-grid and 50-m-grid land-use rasters
(see SI Appendix for results).

To estimate dynamic population density, we counted the hourly number
of unique devices in each 250-m grid cell and the corresponding land-use
category based on the raster cell. We classified land-use types into three
groups to account for mobility behavior and varying infection risk associated
with certain places and activities (45, 46). Our data-processing workflow is
visualized in SI Appendix, Fig. S1. The rasterization process was implemented
in Python and deployed on NYU Center for Urban Science and Progress’
(CUSP’s) Research Computing Facility (RCF), and the activity computation
was performed with PySpark on a Hadoop distributed computing cluster
using NYU’s High Performance Computing platform.

Our 250-m grid-cell-level measurement can be aggregated into larger
geospatial units in order to estimate neighborhood activities at different
scales. In this work, we used zip code aggregation to align with the spatial
resolution of COVID-19 infection data provided by the NYCDOH. The zip
code aggregated Exρ is defined as:

Az,g,t,L =
1

Nz

Nz∑
i=1

Ag,t,L, [2]

where Az,g,t,L is the average number of hourly unique devices in a 250-m ×
250-m grid cell by land-use type L in a given zip code z, and Nz is the num-
ber of grid cells in zip code z. The various spatial aggregation levels used
in our study can introduce the potential risk of bias caused by the mod-
ifiable areal unit problem. Our data-integration methods are designed to
minimize bias while accounting for privacy concerns and the spatial reso-
lution of available data, particularly the zip-code-level COVID-19 infection
data from the NYCDOH. We acknowledge that zip codes are not necessar-
ily socioeconomically or demographically homogeneous and provide only
approximations of neighborhood boundaries. However, given the density
of zip code areas in NYC, the geographic boundaries provide reasonable
proxies for distinct communities. Furthermore, the modified zip code tabu-
lation areas provided by the NYCDOH combine zip code areas with smaller
populations to create more stable estimates to reduce statistical uncertainty
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(35). Based on our social-distancing metric, changes in mobility activity by
residential, nonresidential, and outdoor land uses in a neighborhood over
the study time period were examined. We filtered out activities from major
roads used exclusively by motor vehicles (those without sidewalks or pedes-
trian access) to remove vehicular activity within a given neighborhood. A
descriptive summary of citywide hourly average activity volumes and pro-
portions in each land-use category before and after the stay-at-home order
can be found in SI Appendix, Fig. S3 and Table S2.

Analyzing Disparities in Exposure Density across the City. To understand dis-
parities in exposure density and behavioral responses to social-distancing
mandates across neighborhoods, we applied an unsupervised machine-
learning clustering algorithm based on a pre/post comparative analysis. We
extracted Exρ subsets for two 2-wk periods, defined as the preimpact period
(February 16 through February 29, 2020) and the postimpact period (March
29 through April 11, 2020), to measure changes in Exρ before and after the
state-mandated stay-at-home order on March 22, 2020. In order to take into
account both the absolute change in activity volume and the change in the
proportion of activity type, we created six input variables for the zip code
clustering analysis, specified as:

Achange, z,L =
Apost, z,L−Apre, z,L

Apre, z,L

Pchange, z,L =
Ppost, z,L−Ppre, z,L

Ppre, z,L

(L∈ residential, non-residential, and outdoor)

, [3]

where Achange, z,L is average hourly activity volume change for residential,
nonresidential, and outdoor land uses in zip code z based on the preim-
pact period activity level (Apre, z,L), and the impact period level (Apost, z,L).
Pchange, z,L is the average hourly change in activity based on the proportion
of those activities occurring in different land-use types. Neighborhood activ-
ity by land-use classification is defined as the proportion of activity in a given
land-use (residential, nonresidential, and outdoor) grid cell.

To identify similarities in the change in Exρ across neighborhoods, we
applied a hierarchical agglomerative clustering algorithm. Initially, each
data point was considered an individual cluster. At each iteration, the closest
two clusters merge with one another based on the proximity matrix mea-
sured by Euclidean distance until all data points form a single cluster (47).
Input data are in the form of a 177× 6 vector—177 zip code neighborhoods
and 6 features—and the optimized number of clusters was determined by
the corresponding dendrogram (hierarchical tree diagram) based on the
similarities and dissimilarities of the objects. We ran different agglomerative
clustering models using complete, average, and Ward’s linkage methods,
and the resultant dendrograms are included in SI Appendix, Fig. S4. We
selected the Ward’s linkage method in order to minimize within-group vari-
ance while maximizing efficiency and variance among groups, instead of
comparing the direct sample distances, as explained by smaller merging cost.
This clustering process is specified as:

∆(Ci , Cj) =
∑

k∈Ci∪Cj

‖~xk − ~mCi∪Cj
‖2−

∑
k∈Ci

‖~xk − ~mCi
‖2−

∑
k∈Cj

‖~xk − ~mCj
‖2

, [4]

where ∆(Ci , Cj) is a merging cost of combining clusters Ci and Cj (distance
between clusters), ~mC is the centroid of cluster C, and ~xk is an individual
element within a cluster. The initial number of optimized clusters sug-
gested by the hierarchical tree diagram (SI Appendix, Fig. S4) is two (n =
2), which maximizes between-group variance. When using n = 2, the clus-
tering result is significantly influenced by activity volume change, rather
than proportion change, features due to the larger variable scale, result-
ing in an imbalanced cluster size that divides neighborhoods into either
Manhattan or non-Manhattan groups. In order to take into account neigh-
borhood activity proportion changes and to balance cluster-group size, we
selected five cluster groups (n = 5), keeping within-group variance small
and between-group variance large, while satisfying the balancing condition.
The resultant clustered neighborhood groups were then integrated with
demographic and socioeconomic characteristics; housing and urban form
features; and COVID-19 infection and outcome data. By using a one-way
ANOVA test and a Tukey’s test for posthoc analysis, we identified statistically
significant differences in neighborhood characteristics between classified
groups.

Identifying the Impact of Exposure Density and Neighborhood Behavior Change
on Infection Risk. In order to evaluate the effect of neighborhood behavior
change on COVID-19 infection rates for the 177 zip code neighborhoods
included in the study, we first estimated Pearson correlation coefficients
for observed community-activity changes before and after the stay-at-
home order and disease-infection case rates—daily new confirmed cases per
100,000 people and cumulative cases per 100,000 people—while accounting
for an incubation period. We observed statistically significant positive corre-
lations between exposure density and infection rates (r = 0.52 and r = 0.47,
respectively).

Then, we developed bivariate and multivariate log-transformed regres-
sion models to identify any statistically significant effects of Exρ on infec-
tion risk, controlling for neighborhood characteristics. Four ordinary least
squares models were specified, each with a dependent variable represent-
ing one of four measures of COVID-19 infection risk (SI Appendix, Table S3),
including case rate, death rate, positivity rate, and deaths per case. One
limitation of COVID-19 per capita infection-rate measures is that they are
based on annual census population estimates as of July 1, 2019 (35). These
rates, therefore, do not account for dynamic changes in localized resident
population, such as those caused by out-movers in response to the pan-
demic. Therefore, we focused on positivity rates in our model and confirmed
using ANOVA that there were no statistically significant differences in test-
ing rates across neighborhoods. In order to account for this limitation for
death rates, we created a deaths-per-case variable based on the World
Health Organization’s case-fatality ratio (48). SI Appendix, Table S4 provides
descriptive statistics for the included independent variables. The bivariate
models take Exρ change (as a percent) as a continuous variable to measure
the marginal effects of activity change on infection rates. The multivari-
ate models use dummy variables for each clustered neighborhood group to
evaluate disparities between groups and are respecified to include a contin-
uous exposure density variable as a robustness check. The linear models are
specified as:

y = β0 + β1X1 + ε (Bivariate model)

y = β0 +
∑n

i=1 βiXi + ε (if n> 1, multivariate model)
, [5]

where y is the logarithmic transformed zip-code-level COVID-19 outcome
variable, cumulative COVID-19 case data from March 1 through June 4,
2020; X1 for the bivariate model is Exρ change; Xi(i> 1) for the multi-
variate model includes the cluster group dummy variables and the set
of neighborhood demographic, socioeconomic, and built-environment fea-
tures; and ε is the error term. We also considered interaction terms between
neighborhood groups and other social determinants of health. Spatial
dependence of COVID infection risk was a consideration. The benefit of
using the neighborhood cluster dummies is the geographic proximity of
the grouped neighborhoods. As shown in Fig. 2, the clusters reflect the
socioeconomic and demographic landscape of NYC, which also accounts
for variations in infection prevalence across zip code boundaries. Thus,
we are capturing potential spatial spillover effects by using the cluster
dummies in the regression model. In order to test the spatial depen-
dency of COVID-19 infections more fully, we respecified our multivariate
regression models by including a spatial dummy variable to account for
adjacency to neighborhoods with high disease burden and ran a spatial
lag model using the k-nearest-neighbor method to create spatial weights.
The results of both modeling approaches reinforce the results as pre-
sented and do not substantially change the magnitude or direction of
the exposure density coefficients. Finally, we used correlation tests and
Variance Inflation Factors analysis to identify multicollinearity as part of
the feature-selection process. The coefficients βi quantify the effects of
neighborhood Exρ.

Data Availability. The primary mobility data that support the findings of
this study are available from VenPath, Inc., but restrictions apply to the
availability of these data, which were used under data sharing agree-
ment. The processed aggregate mobility data that are directly used for
clustering and regression analyses are available, upon reasonable request,
from the corresponding author, subject to any restrictions related to the
NYU Institutional Review Board approval and with permission of the data
provider.

Additional data needed to evaluate the analyses in the paper are
described in SI Appendix, Table S1. Land use and building type information
data is available through the New York City Department of City Planning
(NYCDCP) website (https://www1.nyc.gov/site/planning/data-maps/open-
data/bytes-archive.page?sorts[year]=0). Data on building footprints is
available from the New York City Department of Information Technology &
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Telecommunications (DoITT) (https://www1.nyc.gov/site/doitt/residents/gis-
2d-data.page), and road network information from NYCDCP (https://www1.
nyc.gov/site/planning/data-maps/open-data/dwn-lion.page). The COVID-
19 case, death, and test information was obtained from the New
York City Department of Health and Mental Hygiene (NYCDOH)
GitHub repository (https://github.com/nychealth/coronavirus-data), the
hospital location information through the NYC OpenData platform
(https://data.cityofnewyork.us/Health/NYC-Health-Hospitals-Facilities-2011/
ymhw-9cz9), and the nursing home locations through the Centers for
Disease Control’s (CDC) National Healthcare Safety Network System (https://
data.cms.gov/stories/s/bkwz-xpvg). All demographic and socioeconomic
data were retrieved from the US American Community Survey (ACS)
administrated by Census Bureau (https://www.census.gov/data/developers/
data-sets/acs-5year.2018.html). All ancillary data related to the current
study may be requested from the corresponding author upon reasonable

request and with permission of the data provider if data are not publicly
available.

The code used to process data and perform the analysis for this paper,
as well as resulting models and figures, is openly available in the publicly
accessible repository GitHub (https://github.com/UrbanIntelligenceLab/
Exposure-Density-and-Neighborhood-Disparities-in-COVID-19-Infection-
Risk) under MIT License.
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